Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết

Với Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng hay, chi tiết Toán lớp 10 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng từ đó đạt điểm cao trong bài thi môn Toán lớp 10.

Bạn đang xem: Hai vecto cùng phương khi nào

*

A. Phương pháp giải

Định nghĩa:

-Giá của vecto là đường thẳng đi qua điểm đầu và điểm cuối của vecto đó.

-Hai vecto được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

-Hai vecto cùng phương có thể cùng hướng hoặc ngược hướng.

-Quy ước: Vecto – không (ký hiệu ) cùng phương, cùng hướng với mọi vecto.

*

Ba vecto

*
được gọi là cùng phương với nhau

Vecto cùng hướng với

*
, vecto ngược hướng với vecto

Phương pháp giải:

Để chứng minh hai vecto cùng phương, ta chứng minh giá của hai vecto đó song song hoặc trùng nhau. ( quan hệ từ vuông góc đến song song, cùng song song với 1 đường thẳng thứ ba, định lí Talet, tính chất đường trung bình của tam giác, hình thang, các góc vị trí so le trong – đồng vị bằng nhau ....)

Để chứng minh hai vecto cùng hướng, ta chứng minh hai vecto đó cùng phương và xét hướng của hai vecto đó.

*

B. Ví dụ minh họa

Ví dụ 1: Cho lục giác đều ABCDEF tâm O. Số các vecto khác không, cùng phương với vecto có điểm đầu và điểm cuối là các đỉnh của lục giác là:

A. 4

B. 6

C. 8

D. 10

Hướng dẫn giải:

Do ABCDEF là lục giác đều tâm O

Suy ra BE // CD // AF

Do đó OB // CD // AF

Do đó các vecto cùng phương với vecto

mà có điểm đầu và điểm cuối là

đỉnh của hình lục giác là các vecto:

*

Vậy có 6 vecto.

Đáp án B

*

Ví dụ 2: Cho hai vecto không cùng phương , . Khẳng định nào sau đây đúng?

A. Không có vectơ nào cùng phương với cả hai vectơ .

B. Có vô số vectơ cùng phương với cả hai vectơ .

C. Có một vectơ cùng phương với cả hai vectơ , đó là vectơ .

D. Cả A, B, C đều sai.

Hướng dẫn giải:

+ Theo quy ước, vecto cùng phương, cùng hướng với mọi vecto (lý thuyết), do đó đáp án C đúng, từ đó suy ra đáp án A và D là đáp án sai.

+ Đáp án B: có vô số vecto cùng phương với cả hai vecto là sai

Thật vậy, giả sử có 1 vecto cùng phương với cả hai vecto

Gọi giá của vecto là đường thẳng m, giá của vecto là đường thẳng a, và giá của vecto là đường thẳng b.

Khi đó

*
mâu thuẫn với giả thiết hai vecto không cùng phương.

Đáp án C

Ví dụ 3: Cho điểm A và vecto khác vecto . Xác định điểm M sao cho vecto cùng phương với vecto .

Hướng dẫn giải:

Gọi giá của vecto là đường thẳng .

TH1: Điểm A thuộc đường thẳng

Lấy điểm M bất kỳ thuộc đường thẳng

Khi đó đường thẳng AM =

Vậy vecto cùng phương với vecto .

Vậy M thuộc đường thẳng với đi qua điểm A và là giá của vecto .

*

TH2: Điểm A không thuộc đường thẳng

+ Qua A, dựng dường thẳng m song song với đường thẳng

+ Lấy điểm M bất kỳ thuộc m, khi đó AM //

Suy ra vecto cùng phương với vecto .

Vậy điểm M thuộc đường thẳng m đi qua A và m // thì vecto cùng phương với vecto .

*

Ví dụ 4: Mệnh đề nào sau đây đúng:

A. Hai vectơ cùng phương với một vectơ thứ ba khác thì cùng hướng

B. Hai vectơ cùng phương với một vectơ thứ ba khác thì cùng phương

C. Hai vectơ cùng phương với một vectơ thứ ba thì cùng phương

D. Hai vectơ ngược hướng với một vectơ thứ ba thì cùng hướng

Hướng dẫn giải:

A Sai vì hai vectơ đó có thể ngược hướng.

B Đúng

C Sai vì thiếu điều kiện vecto thứ ba khác , nếu vecto thứ ba là thì theo lý thuyết, mọi vecto đều cùng phương với vecto nên hai vecto cùng phương với vecto thì chưa chắc đã cùng phương với nhau.

D Sai vì thiếu điều kiện vecto thứ ba khác

Đáp án B

Ví dụ 5: Cho ba điểm A, B, C phân biệt. Khi đó khẳng định nào sau đây đúng nhất.

A. A, B, C thẳng hàng khi và chỉ khi cùng phương.

B. A, B, C thẳng hàng khi và chỉ khi

*
cùng phương.

C. A, B, C thẳng hàng khi và chỉ khi

*
cùng phương.

Hướng dẫn giải:

+ Ta có: A, B, C thẳng hàng khi và chỉ khi cùng phương là đúng.

Xem thêm: Cách Tìm Số Hạng Đầu Và Công Sai Của Cấp Số Cộng Cực Hay, Công Thức Cấp Số Cộng Chi Tiết Nhất

Thật vậy, nếu hai vecto cùng phương thì hai đường thẳng AB và AC song song hoặc trùng nhau. Vì chúng có chung điểm A nên chúng phải trùng nhau. Vậy A, B, C thẳng hàng.